Performance Testing – Assured Speed, Scalability and Stability of Applications

Today we have more expectations from software than we used to have earlier. This is the primary reason why Performance testing is turning out to be so critical. Performance testing is a part of any organization IT system. It’s a given that modern application regardless of volume usage should undertake standard Performance testing. These tests reveal defective assumptions about how applications handle high volume, guarantee framework-scaling works as anticipated and recognize load-related defects. Performance testing’s capacity to identify defects happening under high load can help enhance applications regardless of scale.

It is unusual that organizations keep on ignoring the significance of Performance testing, often-deploying applications with slight or no understanding of their performance. This mentality has changed little in the course of recent years as failure of high-profile software applications remains the bottleneck.

In short, Performance testing should be the topmost priority of the organization before releasing a software or an application.

Why Performance Testing?

Performance testing is used to check how well an application can deal with user traffic. By putting a repeated scenario on an application or site, it is likely to analyse breaking points and assess projected behaviour. In particular, Performance testing is performed to identify reliability, speed, scalability, responsiveness and stability of the software.

As a code change from a team that is endlessly incorporating new features, bug fixes can influence how an application looks, and functions on different devices and browsers.  It can change how rapidly that application loads across machines.erformance testing is used to check how well an application can deal with user traffic. By putting a repeated scenario on an application or site, it is likely to analyse breaking points and assess projected behaviour. In particular, Performance testing is performed to identify reliability, speed, scalability, responsiveness and stability of the software.

This is why performance testing is so crucial to a well-rounded QA strategy— checking an application’s performance, ensuring consumers are experiencing acceptable load time, and site speed is foundational to high-quality software.

Importance of Performance Testing

1.     Quick functional flows matters

Every end user of Software expects that each transaction s/he makes should be completed quickly, or take less time. Performance Testing plays crucial role in the same.

2.     Capacity Management

A performance test gives inputs on whether hardware or production configuration needs any improvement, before a new software is released on a live environment.

3.     Software Health Check-up

A performance test helps check the health of any software, and gives inputs for additional fine-tuning.

4.     Quality Assurance

A performance test also inspects the quality of code written in the development life cycle. It is a crucial part to identify if the development team needs special training, etc.  to create more fine-tuned code.

Now that you clearly know the importance of Performance testing, finding the bottleneck should be your next goal.

In a complex system, built with many pieces like application servers, network, database servers and many more there are high chances of you facing a problem. Let us discuss about the possible Bottlenecks.

What are Bottlenecks?

Performance bottlenecks can lead an otherwise functional computer or server to slow down or crawl. The term “bottleneck” can be used for both an overloaded network and the state of a computing device where any two components at any given time do not match pace, thus slowing down the overall performance. Solving bottleneck problems usually results in returning the system to operable performance levels; yet, addressing bottleneck fix involves first identifying the underperforming component.

Here are four common causes of bottlenecks

CPU Utilization

According to Microsoft, “processor bottlenecks occur when the processor is so busy that it cannot respond to requests for time.”  Simply put, these bottlenecks are a result of an overloaded CPU that is unable to perform tasks in a timely manner.

CPU bottlenecks appear in two structures:

  • a processor running at more than 80 percent volume for a prolonged period, and
  • an excessively long processor queue

CPU usage bottlenecks regularly originate from the lack of a system memory and constant disruption from I/O devices. Settling these issues includes improving CPU power, including more RAM, and enhancing programming coding proficiency.

Network Utilization

Network failures happen when the correspondence between two devices comes up short on bandwidth or processing capacity and is unable to finish the task rapidly. According to Microsoft, “network bottlenecks occur when there is an overloaded server, an overburdened network communication device, and when the network itself loses integrity”. Solving network usage issues normally includes adding or upgrading servers, and upgrading network hardware like hubs, routers and access points.

Software Limitation

Often problems related to performance occurs from within the software itself. At times, programs can be designed to deal with just a limited number of tasks at once, this makes it impossible for the program to use up any extra CPU or RAM assets even when they accessible. Furthermore, a program may not be written to work with numerous CPU streams, thus only using a single core on a multicore processor.

These issues are settled through rewriting and fixing software.

Disk Usage

The slowest segment inside a PC or server is generally a long-term storage, which involves HDDs and SSDs, and is usually an inevitable bottleneck. Additionally, the most rapid long-term storage solutions have physical speed limits, making this bottleneck cause one of the most troublesome ones to investigate. In most cases, disk usage speed can develop by reducing fragmentation problems and increasing data caching rates in RAM. On a physical level, you can solve insufficient bandwidth problem by moving to faster storage devices and expanding RAID configurations.

High-level activities during Performance Testing

Test Coverage

Test coverage includes a colossal ability to cover all functionalities while conducting performance testing. Although, the scenarios must be exhibitive of different parameters, you can attempt automating key functionalities by assembling many scenarios. User data must be projected properly, as there would be several users using the system in their own context.

Non-Functional Requirements

Functional as also non-functional requirements  hold equal importance in performance testing. Functional requirements are far more specific and contain within them input data types, algorithms, and functionality to be covered. The real challenge is identifying less specific non-functional requirements- some of which are  stability, capacity, usability, responsiveness, and interoperability.

Performance Test Analysis

Analysing the performance test results is the most challenging and key task in performance testing. It requires you to have detailed knowledge and good judgment to analyse reports and tools. Moreover, you need to regularly update the tests based on the situation.

Conclusion

Proactive Performance testing efforts help customers get an early feedback and assist in baselining application performance. This in turn ensures that cost of fixing the performance bottlenecks at later stages of development is drastically reduced. It is always easier and less costly to redesign an application in its early stages of development than at a much later stage.

This also makes sure that performance bottlenecks such as concurrency, CPU or memory utilization & responsiveness are addressed early on in the application life cycle.

Nitor excels at evaluating  the performance of different technology& domain applications. It has well defined processes & strategies for baselining the application performance.

Nitor TCoE has expert performance testers who are capable of executing the performance engagement with close coordination with various stakes holders. Nitor performance testers are highly skilled in carrying out performance testing activities through open source tool or Microsoft tools set.

For more information, please contact marketing@nitroinfotech.com

What, Why & How of White Box Testing!

White Box testing, a type of quality assurance methodology in software testing, focuses on evaluating the internal working of the system. A White Box tester should gain the knowledge of the internals of system and understand how the system is implemented. Once the tester has gained an understanding of the internal structure of the system, he/she can use the knowledge to develop test cases to test the data flow, control flow, information flow, error handling, exceptions, and even coding practices implemented in the system.

Why White Box testing?

White Box testing is carried out to check:

  • Security holes in the code
  • Broken or incomplete paths in the code
  • Flow of the structure mentioned in the specification document
  • All conditional loops in the code to verify the complete functionality of the application
  • Code line by line or section by section and provide 100% testing

White Box Testing Tools and Techniques

White Box testing is methodological approach of testing the internals of a system by following the below set of activities:

  • Understand the system: a White Box tester must carefully go through the requirement document and understand the functional requirements such as how the processing of the data is handled and nonfunctional requirements such as responsiveness.
  • Analyze the system: A White Box tester analyzes the technical design and implementation of system by reviewing the technical design and architecture documents.
  • Test Design: During test design, a White Box tester utilizes the understanding of the system’s functional/non-functional and technical requirements to create effective test designs by  using static & dynamic White Box test design techniques.
  • Test Implementation: In this stage, a White Box tester makes use of proven White Box testing frameworks to implement the White Box test cases.

Benefits of White Box testing:

Some  important benefits of White Box testing are listed below:

  • One of the major benefits of White Box testing is time and cost saving in finding defects which would otherwise require waiting for a Black Box tester to find the issue. This would happen only after the implementation is ready and deployed in the test environment.
  • White Box testing not only shows the presence of the defect but also helps in locating the lines of code that caused the defect.
  • White Box testing helps in optimization of code.
  • White Box testing detects errors that can crop up due to “hidden” code.
  • Deciding on which type of input/data should be utilized in testing the application effectively can be easily deduced, as the tester has the knowledge of the internal coding structure.
  • It facilitates in removing the extra lines of code which can otherwise cause hidden defects.